5 TO 18 GHz DOUBLE-BALANCED MIXER

MODELS: DMX0518L, DMY0518L, DMX0618L AND DMY0618L

FEATURES

\author{

- RF/LO coverage................ 5 to 18 GHz
 - IF operation DC to 7 GHz
 - LO power range +7 to +13 dBm
 - Conversion loss................ 5 dB typical
 - LO-to-RF isolation 35 dB typical
 - Packaging Hermetically sealed
}

MITEQ's DMX and DMY Series of mixers are constructed using double-tuned microstrip RF and LO baluns with a DC-coupled IF structure. The construction, coupled with the hermetic packaging, provides for high inherent reliability and isolation over an extremely broad frequency range. This device performs as an up- or downconverter covering most EW bands and communication applications. This mixer is also available with medium or high forward voltage diodes (M, H) yielding proportional changes in LO power and spurious performance.

ELECTRIGAL SPECIFICATIONS					
INPUT PARAMETERS	CONDITION	UNITS	MIN.	TYP.	MAX.
RF frequency range		GHz	5		18
RF VSWR (RF = -10 dBm, LO = +10 dBm)	5 to 18 GHz 6 to 18 GHz	Ratio Ratio		$\begin{gathered} 2: 1 \\ 1.75: 1 \end{gathered}$	
LO frequency range		GHz	5		18
LO power range		dBm	+7	+10	+13
LO VSWR (LO = +10 dBm)	5 to 18 GHz 6 to 18 GHz	Ratio Ratio		$\begin{gathered} 3.5: 1 \\ 3: 1 \end{gathered}$	
TRANSFER CHARACTERISTICS	CONDITION	UNITS	MIN.	TYP.	MAX.
Conversion loss (IF = 100 MHz , LO = +10 dBm)	5 to 18 GHz 6 to 18 GHz	$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~dB} \\ & \hline \end{aligned}$		$\begin{aligned} & 6 \\ & 5 \end{aligned}$	$\begin{aligned} & 8 \\ & 7 \end{aligned}$
Single-sideband noise figure	6 to 18 GHz	dB		7	8
LO-to-RF isolation	6 to 18 GHz	dB	20	35	
LO-to-IF isolation	6 to 18 GHz	dB	20	35	
IF-to-RF isolation	DC to 8 GHz	dB	20	35	
Input power at 1 dB compression	$\mathrm{LO}=+10 \mathrm{dBm}$	dBm	0	+3	
Input two-tone third-order intercept point	$\mathrm{LO}=+13 \mathrm{dBm}$	dBm	+10	+13	
OUTPUT PARAMETERS	CONDITION	UNITS	MIN.	TYP.	MAX.
IF frequency range	3 dB bandwidth	GHz	DC		7
IF VSWR (IF $=-10 \mathrm{dBm}, \mathrm{LO}=+10 \mathrm{dBm}$)		Ratio		2:1	

DMX0518L/DMY0518L TYPICAL TEST DATA

VSWR
($\mathrm{LO}=+13 \mathrm{dBm}$)

CONVERSION LOSS (IF = 100 MHz) IF RESPONSE (WITH 5 AND 20 GHz FIXED LO) ($\mathrm{LO}=+13 \mathrm{dBm}$)

MAXIMUM RATINGS
Specification temperature $+25^{\circ} \mathrm{C}$
Operating temperature
\qquad
Storage temperature \qquad -54 to $+85^{\circ} \mathrm{C}$ -65 to $+125^{\circ} \mathrm{C}$

SINGLE-TONE (m) RF x (n) LO RELATIVE SPUR LEVEL (dBc) (AVERAGE MIDBAND RF, LO, IF FREQUENCIES, $R F=-10 \mathrm{dBm}, L 0=+10 \mathrm{dBm})$

$\stackrel{\text { SPUR }}{\substack{\text { (m) } \mathrm{RF} \\ \text { (n) } \mathrm{LO}}}$			RF TEST FREQ. (GHz)	LO TEST FREQ. (GHz)	SPUR LEVEL (dBc)
1	X	1	11	15	0
1	x	2	14.4	9.2	-36
1	x	3	16.4	6.8	-14
2	x	1	9	14	-45
2	x	2	12	14	-56
2	x	3	15.5	9	-46
3	x	1	7.33	18	-50
3	x	2	8	10	-55
3	x	3	10.66	12	-53

AVAILABLE OPTIONS

Medium/high dynamic range options $\mathrm{M}(\mathrm{LO}=+13$ to $+17 \mathrm{dBm}),\left(\mathrm{IP}^{3}=+18 \mathrm{dBm}\right.$ typ. $)$ $\mathrm{H}(\mathrm{LO}=+17$ to $+20 \mathrm{dBm}),\left(\mathrm{IP}^{3}=+22 \mathrm{dBm}\right.$ typ. $)$ DMX0518, M, H (Conversion loss = 9 dB max.) DMX0618, M, H (Conversion loss = 8 dB max.)

NOTE: Test data supplied at $25^{\circ} \mathrm{C}$; conversion loss and LO-to-RF isolation.

OUTLINE DRAWINGS

NOTE: All dimensions shown in brackets [] are in millimeters.

DMX HOUSING

4

