### FIVE-CHANNEL DOWNCONVERTER MODULE WITH INPUT RF SWITCH/LIMITER AND LO AMPLIFIER/DIVIDER

# **MODEL SERIES: DSS0818**

## **FEATURES**

- RF/LO coverage ...... 8 to 18 GHz
- Ideal for broadband DF receivers
- External IF phase/amplitude adjustments
- Channel-to-channel RF tracking
  Phase ..... ±5° typical
  Amplitude ...... ±0.5 dB typical
- Remote band/blanking/BIT selection



MITEQ's Model DSS Series integrates our standard broadband double-balanced mixer designs with input limiter protection diodes and IF amplifiers to provide a phase- and amplitude-tracked five-channel downconverter with an integrated LO amplifier/splitter. A three-way input switch/limiter provides remote band/blanking/BIT select and protection from undesired high signal levels. This module is most often used as the "front-end" of a direction-finding system using four antennas in the azimuth, elevation or combined directions and a fifth antenna channel to resolve additional received strong "back or side lobe" signals and to identify the receiver image response. The DSS0818 is also useful as an instantaneous frequency monitor with suitable input frequency to phase encoders (application notes available).

| ELECTRICAL SPECIFICATIONS                                                 |                                     |          |      |       |      |
|---------------------------------------------------------------------------|-------------------------------------|----------|------|-------|------|
| INPUT PARAMETERS                                                          | CONDITION                           | UNITS    | MIN. | TYP.  | MAX. |
| RF/LO frequency range                                                     | LO <sub>1</sub> and LO <sub>2</sub> | GHz      | 8    |       | 18   |
| RF power, 1 dB compression                                                | @ 6 dB gain nominal                 | dBm      |      | -7    |      |
| RF power                                                                  | Maximum average                     | Watts    |      | 2     |      |
| RF power (maximum peak,<br>5 μs pulse, 1% duty cycle)                     |                                     | Watts    |      | 200   |      |
| LO power, operating                                                       | LO <sub>1</sub> and LO <sub>2</sub> | dBm      | -18  | -15   | -12  |
| RF and LO VSWR (RF = -10 dBm, LO = -15 dBm)                               |                                     | Ratio    |      | 1.5:1 |      |
| BIT (built-in-test) control (3 BITS)                                      |                                     | Logic    |      | TTL   |      |
| DC current at ±12 V                                                       |                                     | mA       |      | 700   |      |
| TRANSFER CHARACTERISTICS                                                  | CONDITION                           | UNITS    | MIN. | TYP.  | MAX. |
| Conversion gain (RF input to IF output,<br>with gain adjustment of ±5 dB) |                                     | dB       | 3    | 8     | 13   |
| Conversion gain flatness                                                  | Across RF band                      | ±dB      |      | 1     |      |
| Single-sideband noise figure at 25°C                                      |                                     | dB       |      | 10    | 14   |
| LO-to-RF isolation                                                        | Including LO amplifier gain         | dB       | 0    | 5     | 10   |
| LO-to-IF isolation                                                        |                                     | dB       |      | 50    |      |
| RF-to-IF isolation                                                        |                                     | dB       |      | 60    |      |
| Output two-tone third-order intercept point                               | LO = -15 dBm                        | dBm      |      | +25   |      |
| Output two-tone second-order intercept point                              |                                     | dBm      |      | +48   |      |
| Channel-to-channel isolation                                              |                                     | dB       |      | 40    |      |
| Channel-to-channel amplitude tracking                                     |                                     | dB       |      | ±0.5  | ±1   |
| Channel-to-channel phase tracking                                         |                                     | Degrees  |      | ±5    | ±15  |
| IF gain adjust                                                            |                                     | ±dB      |      |       | 5    |
| IF phase adjust                                                           |                                     | ±Degrees |      |       | 20   |
| OUTPUT PARAMETERS                                                         |                                     | UNITS    | MIN. | TYP.  | MAX. |
| IF frequency range                                                        | -3 dB bandwidth                     | MHz      | 80   | 160   | 240  |
| IF VSWR (IF = -10 dBm, LO = -15 dBm)                                      | Ratio                               |          | 2:1  |       |      |

## **DSS0818 TYPICAL TEST DATA**



### **BLOCK DIAGRAM OF MITEQ 5-CHANNEL GAIN- AND PHASE-MATCHED FRONT END**



#### **APPLICATION NOTES**



1. "Microwave Passive Direction Finding", S. Lipsky, 1987, John Wiley & Sons publisher TK6565.D5L57.

#### **APPLICATIONS OF FIVE-CHANNEL FRONT ENDS**



#### **ALTERNATIVE APPLICATIONS**

Can the basic direction-finding receiver also be used to measure incoming frequency?

Yes, by first encoding the received signal into two separate outputs that have a phase difference in direct proportion to their frequency:



A large cable length difference in the two splitter outputs will yield rapidly varying phase with frequency. If these outputs are applied to a two-channel DF system, the output phase difference, together with knowledge of the encoder cable lengths, can be used to determine input frequency. This is the basic principle of an instantaneous frequency monitor (IFM). In actual practice, several frequency encoders are used with progressively greater frequency resolution, similar to how one reads the dials of a gas or an electric meter.

